DOI: 10.36016/VM-2023-109-14



Veterinary Medicine: inter-departmental subject scientific collection. 2023. Issue 109. P. 77–81.


Download full text (PDF)


ASSESSMENT OF ANTI-INFLAMMATORY PROPERTIES OF METAL NANOPARTICLES AS POTENTIAL MEANS FOR THE CORRECTION OF PATHOLOGIES ON THE REPRODUCTIVE SYSTEM IN ANIMALS


Koshevoy V. I., Naumenko S. V.

State Biotechnological University, Kharkiv, Ukraine, e-mail: koshevoyvsevolod@gmail.com

Serhienko V. R.

Veterinary Clinic “Vetekspert”, Kharkiv, Ukraine

An urgent scientific problem is the search for means to correct inflammatory processes, especially reproductive pathologies. The article summarizes information from modern scientific sources regarding the development of drugs with pronounced anti-inflammatory properties based on nanoparticles (NPs) of metals, in particular noble ones – Silver and Gold, which exhibit antimicrobial and antioxidant effects and contribute to the reduction of inflammatory processes in various pathological conditions, which is the scientific basis for their introduction into the practice of reproductive veterinary medicine. On the other hand, the relevance of the study of the anti-inflammatory activity of NPs of rare earth elements (gadolinium, yttrium, lanthanum), which have an antibiotic effect, are able to neutralize toxic radicals, and therefore have a potential ability to correct some links in the pathogenesis of diseases of the reproductive system of inflammatory origin, is substantiated. The use of the above-mentioned metals as anti-inflammatory agents became possible due to the synthesis of compounds based on them in nanoform, as a result of the transition into which they acquire unique properties – the ability to penetrate the cell, overcome histohematiс barriers, have a large surface area and lower toxicity compared to macroergs. It should be noted that the manifestation of anti-inflammatory properties depends on the method of obtaining NPs, their physicochemical characteristics, and therefore there is a need for detailed studies of various NPs to detail the mechanisms of action and assess pharmacological activity

Keywords: antioxidants, antibiotics, precious metals, rare earth elements


References

Agarwal H. et al. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomedicine & Pharmacotherapy. 2019. Vol. 109. P. 2561–2572. DOI: https://doi.org/10.1016/j.biopha.2018.11.116.

Aleya L., Abdel-Daim M. M. Advances in nanotechnology, nanopollution, nanotoxicology, and nanomedicine. Environmental Science and Pollution Research International. 2020. Vol. 27, No 16. P. 18963–18965. DOI: https://doi.org/10.1007/s11356-020-08800-6.

Nair H. B. et al. Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochemical Pharmacology. 2010. Vol. 80, No 12. P. 1833–1843. DOI: https://doi.org/10.1016/j.bcp.2010.07.021.

Forest V. Experimental and computational nanotoxicology-complementary approaches for nanomaterial hazard assessment. Nanomaterials. 2022. Vol. 12, No 8. P. 1346. DOI: https://doi.org/10.3390/nano12081346.

Yang B., Chen Y., Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chemical Reviews. 2019. Vol. 119, No 8. P. 4881–4985. DOI: https://doi.org/10.1021/acs.chemrev.8b00626.

Ahmad A., Imran M., Sharma N. Precision nanotoxicology in drug development: current trends and challenges in safety and toxicity implications of customized multifunctional nanocarriers for drug-delivery applications. Pharmaceutics. 2022. Vol. 14, No 11. P. 2463. DOI: https://doi.org/10.3390/pharmaceutics14112463.

Miranda R. R. et al. Proteome-wide analysis reveals molecular pathways affected by AgNP in a ROS-dependent manner. Nanotoxicology. 2022. Vol. 16, No 1. P. 73–87. DOI: https://doi.org/10.1080/17435390.2022.2036844.

Yedgar S., Barshtein G., Gural A. Hemolytic activity of nanoparticles as a marker of their hemocompatibility. Micromachines. 2022. Vol. 13, No. 12. P. 2091. DOI: https://doi.org/10.3390/mi13122091.

Singh A. V. et al. Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: a comprehensive review. Archives of Toxicology. 2023. Vol. 97, No 4. P. 963–979. DOI: https://doi.org/10.1007/s00204-023-03471-x.

Zhang X. F. et al. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences. 2016. Vol. 17, No 9. P. 1534. DOI: https://doi.org/10.3390/ijms17091534.

Eming S. A., Krieg T., Davidson J. M. Inflammation in wound repair: molecular and cellular mechanisms. The Journal of Investigative Dermatology. 2007. Vol. 127, No 3. P. 514–525. DOI: https://doi.org/10.1038/sj.jid.5700701.

Broughton G. et al. The basic science of wound healing. Plastic and Reconstructive Surgery. 2006. Vol. 117, No 7. P. 12S–34S. DOI: https://doi.org/10.1097/01.prs.0000225430.42531.c2.

Cameron S. J. et al. Nanoparticle effects on stress response pathways and nanoparticle-protein interactions. International Journal of Molecular Sciences. 2022. Vol. 23, No 14. P. 7962. DOI: https://doi.org/10.3390/ijms23147962.

Tang S., Zheng J. Antibacterial activity of silver nanoparticles: structural effects. Advanced Healthcare Materials. 2018. Vol. 7, No 13. P. e1701503. DOI: https://doi.org/10.1002/adhm.201701503.

Bhol K. C., Schechter P. J. Effects of nanocrystalline silver (NPI 32101) in a rat model of ulcerative colitis. Digestive Diseases and Sciences. 2007. Vol. 52, No 10. P. 2732–2742. DOI: https://doi.org/10.1007/s10620-006-9738-4.

Tian, J. et al. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem. 2007. Vol. 2, No 1. P. 129–136. DOI: https://doi.org/10.1002/cmdc.200600171.

Wong C. K. et al. Intracellular signaling mechanisms regulating toll-like receptor-mediated activation of eosinophils. American Journal of Respiratory Cell and Molecular Biology. 2007. Vol. 37, No 1. P. 85–96. DOI: https://doi.org/10.1165/rcmb.2006-0457OC.

Nadworny P. L. et al. Does nanocrystalline silver have a transferable effect? Wound Repair and Regeneration. 2010. Vol. 18, No 2. P. 254–265. DOI: https://doi.org/10.1111/j.1524-475X.2010.00579.x.

David L. et al. Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids and Surfaces. B, Biointerfaces. 2014. Vol. 122. P. 767–777. DOI: https://doi.org/10.1016/j.colsurfb.2014.08.018.

Hornos Carneiro M. F., Barbosa F., Jr. Gold nanoparticles: A critical review of therapeutic applications and toxicological aspects. Journal of Toxicology and Environmental Health. Part B, Critical Reviews. 2016. Vol. 19, No 3-4. P. 129–148. DOI: https://doi.org/10.1080/10937404.2016.1168762.

Kumawat M. et al. Surface engineered peroxidase-mimicking gold nanoparticles to subside cell inflammation. Langmuir. 2022. Vol. 38, No 5. P. 1877–1887. DOI: https://doi.org/10.1021/acs.langmuir.1c03088.

Di Bella D. et al. Gold nanoparticles reduce inflammation in cerebral microvessels of mice with sepsis. Journal of Nanobiotechnology. 2021. Vol. 19, No 1. P. 52. DOI: https://doi.org/10.1186/s12951-021-00796-6.

Díaz-Pozo P. et al. Gold nanoparticles supported on ceria nanoparticles modulate leukocyte-endothelium cell interactions and inflammation in type 2 diabetes. Antioxidants. 2022. Vol. 11, No 11. P. 2297. DOI: https://doi.org/10.3390/antiox11112297.

Koshevoy V. et al. Male infertility: Pathogenetic significance of oxidative stress and antioxidant defence (review). Scientific Horizons. 2021. Vol. 24, No 6. P. 107–116. DOI: https://doi.org/10.48077/scihor.24(6).2021.107-116.

Horie M., Tabei Y. Role of oxidative stress in nanoparticles toxicity. Free Radical Research, 2021. Vol. 55, No 4. P. 331–342. DOI: https://doi.org/10.1080/10715762.2020.1859108.

Koshevoy V. et al. Effect of gadolinium orthovanadate nanoparticles on male rabbits’ reproductive performance under oxidative stress. World’s Veterinary Journal. 2022. Vol. 12, No 3. P. 296–303. DOI: https://doi.org/10.54203/scil.2022.wvj37.

Khurana A., Saifi M. A., Godugu C. Yttrium oxide nanoparticles attenuate L-arginine induced chronic pancreatitis. Biological Trace Element Research. 2023. Vol. 201, No 7. P. 3404–3417. DOI: https://doi.org/10.1007/s12011-022-03446-6.

Vijayan V. et al. Lanthanum oxide nanoparticles reinforced collagen ƙ-carrageenan hydroxyapatite biocomposite as angio-osteogenic biomaterial for in vivo osseointegration and bone repair. Advanced Biology, 2023. P. e2300039. DOI: https://doi.org/10.1002/adbi.202300039.

Maksimchuk P. O. et al. High antioxidant activity of gadolinium-yttrium orthovanadate nanoparticles in cell-free and biological milieu. Nanotechnology. 2021. Vol. 33, No 5. P. 055701. DOI: https://doi.org/10.1088/1361-6528/ac31e5.

Gonca S. et al. Antimicrobial effects of nanostructured rare-earth-based orthovanadates. Current Microbiology. 2022. Vol. 79, No 9. P. 254. DOI: https://doi.org/10.1007/s00284-022-02947-w.

image description

2010-2024 © ННЦ ІЕКВМ Всі права захищено.

image description