DOI: 10.36016/VM-2023-109-9



Veterinary Medicine: inter-departmental subject scientific collection. 2023. Issue 109. P. 53–60.


Download full text (PDF)


MOLECULAR GENETIC STUDIES OF LISTERIA MONOCYTOGENES ISOLATES FROM DIFFERENT ANIMAL SPECIES IN UKRAINE


Poliushko D. P., Stegniy B. T., Marchenko N. V., Bolotin V. I.

National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”, Kharkiv, Ukraine, e-mail: vbolotin@hotmail.de

The PCR-profiles of 12 archival cultures of listeria isolated from different species of animals and stored in the collection of microorganisms of the NSC IEСVM were determined. It was established that 10 isolates have genes prs, inlB, inlA, inlC, inlJ, actA, plcB, hly, iap, which characterizes them as highly virulent. The L. monocytogenes 61052 isolate did not contain the inlA gene, and the actA and hly genes were not detected in L. monocytogenes Varja. Using PCR, it was also established that 11 studied cultures belong to serotypes 4b, 4d, 4e, as well as one isolate to 1/2a. The obtained data can be used to improve the diagnosis of animal listeriosis in Ukraine due to the creation of highly specific antigens

Keywords: listeriosis, polymerase chain reaction, virulence factors


References

Al-Ali H. J. (2018). Molecular detection ofserotype groups of Listeria monocytogenes isolated from gallbladder of cattle and sheep in Iraq. Veterinary World. 2018. Vol. 11, No 4. P. 431–436. DOI: https://doi.org/10.14202/vetworld.2018.431-436.

Alberti-Segui C., Darren R., Higgins E. Differential function of Listeria monocytogenes listeriolysin O and phospholipases C invacuolar dissolution following cell-to-cell spread. Cellular Microbiology. 2007. Vol. 9. P. 179–184. DOI: https://doi.org/10.1111/j.1462-5822.2006.00780.x.

Al-Ghanim A., Abbas B. Detection of Listeria monocytogenes in frozen food using a specific inlB virulence gene. Journal of Physics: Conference Series. 2021. Vol. 66. P. 328–333. DOI: https://doi.org/10.1088/1742-6596/1879/2/022011.

Boukili M. et al. Prevalence, characterization and antimicrobial resistance of Listeria monocytogenes isolated from beef meat in Meknes city, Morocco. Germs. 2020. Vol. 10, No 2. P. 74–80. DOI: https://doi.org/10.18683/germs.2020.1180.

Camargo A. C. et al. Molecular Serogrouping of Listeria monocytogenes from Brazil Using PCR. Journal of Food Protection. 2016. Vo. 79, No 1. P. 144–147. DOI: https://doi.org/10.4315/0362-028x.jfp-15-294.

Cao X. et al. Isolation and characterization of Listeria monocytogenes from the blackheaded gull feces in Kunming, China. Journal of Infection and Public Health. 2018. Vol. 11. P. 59–63. DOI: https://doi.org/10.1016/j.jiph.2017.03.003.

Doumith M. et al. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. Journal of Clinical Microbiology. 2004. Vol. 42, No 8. P. 3819–3822. DOI: https://doi.org/10.1128/jcm.42.8.3819-3822.2004.

Gandhi M., Chikindas M. L. Listeria: A foodborne pathogen that knows how to survive. International Journal of Food Microbiology. 2007. Vol. 113, No 1. P. 1–15. DOI: https://doi.org/10.1016/j.ijfoodmicro.2006.07.008.

Hingston P. et al. Genotypes associated with Listeria monocytogenes isolates displaying impairedor enhanced tolerancesto cold, salt, acid, or desiccation stress. Frontiers in Microbiology. 2017. Vol. 8 P. 369–378. DOI: https://doi.org/10.3389/fmicb.2017.00369.

Huang B. et al. Observation of a new pattern in serogroup-related PCR typing of Listeria monocytogenes 4b isolates. Journal of Clinical Microbiology. 2011. Vol. 49. P. 426–429. DOI: https://doi.org/10.1128/jcm.01207-10.

Johnson J. et al. Natural atypical Listeria innocuastrains with Listeria monocytogenes pathogenicity genes. Applied and Environmental Microbiology. 2004. Vol. 70, No 7. P. 4256-4258. DOI: https://doi.org/10.1128/aem.70.7.4256-4266.2004.

Kasalica A. et al. Listeria monocytogenes in milk and dairy products. Biotechnology in Animal Husbandry. 2011. Vol. 27, No 3. P. 1067–1082. DOI: https://doi.org/10.2298/BAH1103067K.

Nightingale K. Listeria monocytogenes: knowledge gained through DNA sequence-based subtyping, implications, and future considerations. Journal of AOAC International. 2010. Vol. 93, No 4. P. 1275–1286. DOI: https://doi.org/10.1093/jaoac/93.4.1275.

Kérouanton A. et al. Evaluation of a multiplex PCR assay as an alternative method for Listeria monocytogenes serotyping. Journal of Microbiological Methods. 2010. Vol. 80, No 2. P. 134–137. DOI: https://doi.org/10.1016/j.mimet.2009.11.008.

Leong D., Alvarez-Ordóñez A., Jordan K. (2014). Monitoring occurrence and persistence of Listeria monocytogenes in foods and food processing environments in the Republic of Ireland. Frontiers in Microbiology. 2014. Vol. 5. P. 436. DOI: https://doi.org/10.3389/fmicb.2014.00436.

Liu D. et al. A multiplex PCR for species- and virulence-specific determination of Listeria monocytogenes. Journal of Microbiological Methods. 2007. Vol. 71, No 2. P. 133–140. DOI: https://doi.org/10.1016/j.mimet.2007.08.007.

Lopez-Valladares G. et al. Human isolates of Listeria monocytogenes in Sweden during half a century (1958-2010). Epidemiology & Infection. 2014. Vol. 142. P. 2251–2260. DOI: https://doi.org/10.1017/s0950268813003385.

Matereke L., Okoh A. Listeria monocytogenes virulence, antimicrobial resistance and environmental persistence. A Review. Pathogens. 2020. Vol. 9, No 7. P. 528. DOI: https://doi.org/10.3390/pathogens9070528.

Momtaz H., Yadollahi S. Molecular characterization of Listeria monocytogenes isolated from fresh seafood samples in Iran. Diagnostic Pathology. 2013. Vol. 8. P. 149. DOI: https://doi.org/10.1186/1746-1596-8-149.

Moors M. A. et al. Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes. Infection and Immunity. 1999. Vol. 67, No 1. P. 131–9. DOI: https://doi.org/10.1128/iai.67.1.131-139.1999.

Moors M. A. et al. Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes. Infection and Immunity. 1999. Vol. 67, No 1. P. 131–139. DOI: https://doi.org/10.1128/iai.67.1.131-139.1999.

Muchaamba F. et al. Different shadesof Listeria monocytogenes: strain, serotype, and lineage-based variability in virulence and stress tolerance profiles. Frontiers in Microbiology. 2022. Vol. 12 P. 792-811. DOI: https://doi.org/10.3389/fmicb.2021.792162.

Nho S. W. et al. Identification of high-risk Listeria monocytogenes serotypes in lineage I (serotype 1/2a, 1/2c, 3a and 3c) using multiplex PCR. Journal of Applied Microbiology. 2015. Vol. 119, No 3. P. 845–852. DOI: https://doi.org/10.1111/jam.12876.

Orsi R., Bakker H., Wiedmann M. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. International Journal of Medical Microbiology. 2011. Vol. 301, No 2. P. 79–83. DOI: https://doi.org/10.1016/j.ijmm.2010.05.002.

Parussolo L. et al. Detection of virulence gene sandanti microbial suscepti bilityprofile of Listeria monocytogenes isolates recovered fromartisanal cheese producedin the Southern regionof Brazil. Anais da Academia Brasileira de Ciências. 2021. Vol. 93, No 3. P. 207–208. DOI: https://doi.org/10.1590/0001-3765202120190200.

Portnoy D. A. et al. Capacity of listeriolysin O, streptolysin O, and perfringolysin O to mediate growth of Bacillus subtilis within mammalian cells. Infection and Immunity. 1992. Vol. 60, No 7. P. 2710–2717. DOI: https://doi.org/10.1128/iai.60.7.2710-2717.1992.

Quereda J. J. et al. Role in virulence of phospholipases, listeriolysin O and listeriolysin S from epidemic Listeria monocytogenes using the chicken embryo infection model. Veterinary Research. 2018. Vol. 49. P. 13. DOI: https://doi.org/10.1186/s13567-017-0496-4.

Wiśniewski P. et al. Antimicrobial resistance and virulence characterization of Listeria monocytogenes strains isolated from food and food processing environments. Pathogens. 2022. Vol. 11, No 10. P. 1099. DOI: https://doi.org/10.3390/pathogens11101099.

Wuenscher M. D. et al. The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. Journal of Bacteriology. 1993. Vol. 175, No 11. P. 3491–3501. DOI: https://doi.org/10.1128/jb.175.11.3491-3501.1993.

Yin Y. et al. A hybrid sub-lineage of Listeria monocytogenes comprising hypervirulent isolates. 2019. Nature Communications. Vol. 10, No 1. P. 4283. DOI: https://doi.org/10.1038/s41467-019-12072-1.

Уховська Т. М. та ін. Моніторинг лістеріозу тварин та засоби його профілактики. Ветеринарна медицина. 2017. Т. 103 С. 222–226. URL: http://jvm.kharkov.ua/sbornik/103/3_50.pdf.

image description

2010-2024 © ННЦ ІЕКВМ Всі права захищено.

image description