DOI: 10.36016/VM-2023-109-5



Veterinary Medicine: inter-departmental subject scientific collection. 2023. Issue 109. P. 26–34.


Download full text (PDF)


STRUCTURAL ANALYSIS OF OPEN READING FRAMES OF BOVINE IMMUNODEFICIENCY VIRUS PROTEINS


Balak O. K.

Kharkiv National Medical University, Kharkiv, Ukraine

Lymanska O. Yu.

National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”, Kharkiv, Ukraine, e-mail: olgaliman@ukr.net

The goal of this study was determining the structural organization peculiarities of the ORF2 and ORF3 proteins of the bovine immunodeficiency virus (BIV). Five ORFs were determined for two BIV isolates with complete genome using the ATGpr software, which permits effective prediction of translation initiation codons with nucleotide accuracy. Phyre2 software was used to predict, analyze the secondary structure and function of proteins. PONDR-FIT software was used to search for protein fragments in a disordered or natively unfolded state. Analysis of the amino acid composition of ORF2 and ORF3 proteins of BIVisolates regarding the presence of nonpolar, polar, aromatic, and hydrophobic amino acid residues was carried out using PSIPRED software. Models of the 3D-structure of proteins were obtained by I-TASSER server. 14% of α helices, 17% of β strands and 43% of disordered structure are predicted for the ORF3 protein. 37% of α helices, 0% of β strands, and 41% of disordered structure were determined for Gag polyprotein, which is translated from ORF2. The distribution of charged amino acid residues characterizes the surface properties of proteins. Their number reaches 23.9% for ORF2 protein. The amount of Arg is 5.2%, Lys — 8.0%, Glu — 7.3%, Asp — 3.4%. The total number of charged amino acid residues of ORF3 is 23.3%. The number of Arg is 12.6%, Lys — 4.9%, Glu — 1.9%, Asp — 3.9%. Only two ORFs of five ones coincide in nucleotide length (and, therefore, in length of corresponding proteins) for the two BIV isolates. The ORF3 protein belongs to the intrinsically disordered proteins that cannot be stably folded into a unique three-dimensional structure under physiological conditions, and the Gag polyprotein, which is translated from ORF2, belongs to the class of fully structured proteins. The secondary structure of both proteins shows the presence of α-helices

Keywords: polyprotein Gag, Lentivirus, Retroviridae


References

Malmquist W. A., Van der Maaten M. J., Boothe A. D. Isolation, immunodiffusion, immunofluorescence, and electron microscopy of a syncytial virus of lymphosarcomatous and apparently normal cattle. Cancer Research. 1969. Vol. 29, No 1. P. 188–200. URL: https://aacrjournals.org/cancerres/article/29/1/188/477078/Isolation-Immunodiffusion-Immunofluorescence-and.

Passos-Castilho A. M., Marchand C., Archambault D. B23/nucleophosmin interacts with bovine immunodeficiency virus Rev protein and facilitates viral replication. Virology. 2018. Vol. 515. P. 158–164. DOI: https://doi.org/10.1016/j.virol.2017.12.021.

Zhang S. et al. Immune suppression in calves with bovine immunodeficiency virus. Clinical and Diagnostic Laboratory Immunology. 1997. Vol. 4. P. 232-235. DOI: https://doi.org/10.1128/cdli.4.2.232-235.1997.

Bhatia S., Patil S., Sood R. Bovine immunodeficiency virus: a lentiviral infection. Indian Journal of Virology. 2013. Vol. 24, No 3. Р. 332–341. DOI: https://doi.org/10.1007/s13337-013-0165-9.

Rodrigues A. P. S. et al. Molecular detection of bovine immunodeficiency virus (BIV) in bovines from the state of Minas Gerais, Brazil. Arguivo Brasileiro de Medicina Veterinaria e Zootecnia. 2019. Vol. 71, No 2. Р. 711–714. DOI: https://doi.org/10.1590/1678-4162-10495.

Gonzalez-Fernandez V. D. et al. First evidence of bovine immunodeficiency virus infection in Mexican cattle. Transboundary and Emerging Diseases. 2020. Vol. 67, No 5. Р. 1768–1775. DOI: https://doi.org/10.1111/tbed.13530.

Keshavarz H., Mohammadi A., Morovati S. Evidence of bovine immunodeficiency virus: a molecular survey in water buffalo populations of Iran. Veterinary Medicine and Science. 2022. Vol. 8. P. 2167–2172. DOI: https://doi.org/10.1002/vms3.872.

Gradil C. M. et al. Detection of bovine immunodeficiency virus DNA in the blood and semen of experimentally infected bulls. Veterinary Medicine. 1999. Vol. 70. P. 21–31. DOI: https://doi.org/10.1016/s0378-1135(99)00130-3.

Garvey K. J. et al. Nucleotide sequences and genome organization of biologically active proviruses of the bovine immunodeficiency-like virus. Virology. 1990. Vol. 175, No 2. P. 391–409. DOI: https://doi.org/10.1016/0042-6822(90)90424-p.

Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Advances in Enzymology and Related Areas of Molecular Biology. 1978. Vol. 47. P. 45–48. DOI: https://doi.org/10.1002/9780470122921.ch2.

Tompa P. Intrinsically unstructured proteins. Trends in Biochemical Sciences. 2002. Vol. 27, No 10. P. 527–533. DOI: https://doi.org/10.1016/s0968-0004(02)02169-2.

Uversky V. Functional roles of transiently and intrinsically disordered regions within proteins. FEBS Journal. 2015. Vol. 282, No 7. Р. 1182–1189. DOI: https://doi.org/10.1111/febs.13202.

Brocca S. et al. Liquid-liquid phase separation by intrinsically disordered protein regions of viruses: roles in viral life cycle and control of virus-host interactions. International Journal of Molecular Sciences. 2020. Vol. 21, No 23. Р. 9045–9075. DOI: https://doi.org/10.3390/ijms21239045.

Liu B. et al. Evidence for the antisense transcription in the proviral R29-127 strain of bovine immunodeficiency virus. Sinica. 2015. Vol. 30, No 3. Р. 224–227. DOI: https://doi.org/10.1007/s12250-015-3559-6.

Rasmussen M. H. et al. Antisense transcription in gammaretroviruses as a mechanism of insertional activation of host genes. Journal of Virology. 2010. Vol. 84, No 8. Р. 3780–3788. DOI: https://doi.org/10.1128/jvi.02088-09.

Hall T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999. Vol. 41. P. 95–98.

Yang J., Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Research. 2015. Vol. 43, No W1. P. W174–W181. DOI: https://doi.org/10.1093/nar/gkv342.

Kelley L. A. et al. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols. 2015. Vol. 10, No 6. P. 846–858. DOI: https://doi.org/10.1038/nprot.2015.053.

Ovejero C. A., González S. A., Affranchino J. L. The conserved Tyr176/Leu177 motif in the α-helix 9 of the feline immunodeficiency virus capsid protein is critical for Gag particle assembly. Viruses. 2019. Vol. 11, No 9. P. 816. DOI: https://doi.org/10.3390/v11090816.

Garbitt-Hirst R., Kenney S. P., Parent L. J. Genetic evidence for a connection between Rous sarcoma virus Gag nuclear trafficking and genomic RNA packaging. Journal of Virology. 2009. Vol. 83, No 13. P. 6790–6797. DOI: https://doi.org/10.1128/jvi.00101-09.

Marie V., Gordon M. L. The HIV-1 Gag protein displays extensive functional and structural roles in virus replication and infectivity. International Journal of Molecular Sciences. 2022. Vol. 23, No 14. P. 7569. DOI: https://doi.org/10.3390/ijms23147569.

Zheng W. et al. Conserved interaction of lentiviral vif molecules with HIV-1 Gag and differential effects of species-specific vif on virus production. Journal of Virology. 2017. Vol. 91, No 7. P. e00064-17. DOI: https://doi.org/10.1128/jvi.00064-17.

image description

2010-2024 © ННЦ ІЕКВМ Всі права захищено.

image description