DOI: 10.36016/VM-2023-109-4



Veterinary Medicine: inter-departmental subject scientific collection. 2023. Issue 109. P. 19–26.


Download full text (PDF)


CHARACTERIZATION OF SWINE HEPATITIS E VIRUS GENOTYPE 3 OPEN READING FRAMES


Lymanska O. Yu.

National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”, Kharkiv, Ukraine, e-mail: olgaliman@ukr.net

The goal of this study was a determination of structural organization features of swine hepatitis E virus genotype 3 open reading frames. Gene selective pressure for genes was estimated using the Tajima’s neutrality test as implemented in MEGA 6. Shannon entropy was used for diversity detection at each position of open reading frames. Shannon entropy plots representing quantitative diversity at each amino acid (nucleotide) position of 11 swine HEV-3 isolates aligned sequences were calculated by software BioEdit. For phylogenetic analysis, nucleotide distances were analyzed using the neighbour-joining algorithm. Analysis of nucleotide, non-synonymous and synonymous distances was performed using MEGA6. Parameters of mutational analysis for swine hepatitis E virus genotype 3 open reading frames ORF1 – ORF3 were determined using Tajima’s neutrality test. Shannon entropy technique revealed that ORF3 is characterized by the most number of diverse amino acid residues (21,7 %) comparing with ORF1, ORF2 coding regions. Analysis of non-synonymous distances in ORF3 allowed to determine an order of evolutionary events in the history of swine HEV-3 isolates. Avian astroviruses strains were used as control because phylogenetic relationships among them correspond to the evolution history of their host species. Tree topology for swine HEV-3 ORF3 based on non-synonymous distances differs from tree structures based on nucleotide and synonymous distances. Positive values of D Tajima’s factor for ORF1, ORF2 of swine HEV-3 show on operating positive selection onto these coding regions. Negative value of D Tajima’s factor for ORF3 coding region indicates onto purifying selection

Keywords: positive selection, Tajima’s neutrality test, negative selection, Shannon entropy


References

Kamar N. et al. Hepatitis E virus infections. Clinical Microbiology Reviews. 2014. Vol. 27, No 1. P. 116–138. DOI: https://doi.org/10.1128/cmr.00057-13.

Lhomme S. et al. Clinical manifestations, pathogenesis and treatment of Hepatitis E virus infections. Journal of Clinical Medicine. 2020. Vol. 9, No 2. P. 331–355. DOI: https://doi.org/10.3390/jcm9020331.

He B. et al. Functional epitopes on hepatitis E virions and recombinant capsids are highly conformation dependent. Human Vaccines and Immunotherapeutics. 2020. Vol. 16, No 7. Р. 1554–1564. DOI: https://doi.org/10.1080/21645515.2019.1703454.

Doceul V. et al. Zoonotis hepatitis E virus: classification, animal reservoirs andtransmission routes. Viruses. 2016. Vol. 8, No 10. P. 270. DOI: https://doi.org/10.3390/v8100270.

Hoan N. X. et al. High hepatitis E virus (HEV) positivity among domestic pigs and risk of HEV infection of individuals occupationally exposed to pigs and pork meat in Hanoi, Vietman. Open Forum Infectious Diseases. 2019. Vol. 6, No 9. P. ofz306. DOI: https://doi.org/10.1093/ofid/ofz306.

Kenney S. P. The current host range of hepatitis E viruses. Viruses. 2019. Vol. 11, No 5. P. 452. DOI: https://doi.org/10.3390/v11050452.

Goto A. et al. Understanding the genetics of viral drug resistance by integrating clinical data and mining of the scientific literature. Scientific Reports. 2022. Vol. 12, No 1. P. 14476–14486. DOI: https://doi.org/10.1038/s41598-022-17746-3.

Stern A. et al. The evolutionary pathway to virulence of an RNA virus. Cell. 2017. Vol. 169, No 1. Р. 35–46. DOI: https://doi.org/10.1016/j.cell.2017.03.013.

Kimura M. The neutral theory of molecular evolution: a review of recent evidence. Japanese Journal of Genetics. 1991. Vol. 66, No 4. Р. 367–386. DOI: https://doi.org/10.1266/jjg.66.367.

Sueoka N. Directional mutation pressure and neutral molecular evolution. Proceedings of the National Academy of Sciences. 1988. Vol. 85. P. 2653–2657. DOI: https://doi.org/10.1073/pnas.85.8.2653.

Blazej P. et al. Optimization of mutation pressure in relation to properties of protein-coding sequences in bacterial genomes. PLoS One. 2015. Vol. 10, No 6. Р. е0130411. DOI: https://doi.org/10.1371/journal.pone.0130411.

Nasrullah I. et al. Genomic analysis of codon usage shows influence of mutation pressure, natural selection, and host features on Marburg virus evolution. BMC Evolutionary Biology. 2015. Vol. 15. P. 174. DOI: https://doi.org/10.1186/s12862-015-0456-4.

Dasmeh P. et al. The influence of selection for protein stability on dN/dS estimation. Genome Biology and Evolution. 2014. Vol. 6, No 10. Р. 2956–2967. DOI: https://doi.org/10.1093/gbe/evu223.

Aziz R. et al. Incorporation of transition to transversion ratio and nonsense mutations, improves the estimation of the number of synonymous and non-synonymous sites in codons. DNA Research. 2022. Vol. 29, No 4. Р. 1–8. DOI: https://doi.org/10.1093/dnares/dsac023.

Valdar W. S. J. Scoring residue conservation. Proteins. 2002. Vol. 48. P. 227–241. DOI: https://doi.org/10.1002/prot.10146.

Tamura K. et al. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution. 2013. Vol. 30, No 12. Р. 2725–2729. DOI: https://doi.org/10.1093/molbev/mst197.

Hall T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999. Vol. 41. P. 95–98.

Kimura M. The neutral theory of molecular evolution. Cambridge: Cambridge University Press, 1983. 367 p. DOI: https://doi.org/10.1017/CBO9780511623486.

Reyes G. R. et al. Isolation of a cDNA from the virus responsible for enterically transmitted non-A, non-B hepatitis. Science. 1990. Vol. 247, No 4948. Р. 1335–1339. DOI: https://doi.org/10.1126/science.2107574.

Кордюм В. А. Эволюция вирусов — попытка нелинейного прогноза. Біополімери і клітина. 2001. Т. 17, № 6. С. 467–486. DOI: https://doi.org/10.7124/bc.0005D6.

Lukashov V., Goudsmit J. Evolutionary relationships among Astroviridae. Journal of General Virology. 2002. Vol. 83. P. 1397–1405. DOI: https://doi.org/10.1099/0022-1317-83-6-1397.

image description

2010-2024 © ННЦ ІЕКВМ Всі права захищено.

image description