DOI: 10.36016/VM-2020-106-13



Veterinary Medicine: inter-departmental subject scientific collection. 2020. Issue 106. P. 73–77.


Download full text (PDF)


SELECTION OF OLIGONUCLEOTIDE SEQUENCES FOR THE PURPOSE OF DETECTION OF GENETIC MATERIAL OF CHLAMYDIA SPP. BY THE REACTION OF AMPLIFICATION


Pavlov S. L., Stegniy B. T.

National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”, Kharkiv, Ukraine, e-mail: psl600@i.ua

The article presents the results of bioinformatic analysis of 112 16s-23s rRNA operon sequences of different chlamydia species with the aim of conserved regions selection that are suitable for the construction of oligonucleotide sequences and a fluorescent probe for their use in real-time PCR. The search for primer sequences was carried out according to the following scheme: determination of the target gene and analysis of its variability, search for conserved regions and selection of optimal regions for primer design. According to the results of the research, the sequences flanking the 142 bp region were selected. Based on an in silico analysis of matrix primer correspondence and intraspecies specificity using FASTA on-line, suitability for the practical use of two primers and one probe for detection of chlamydia genetic material of different species was established

Keywords: chlamydiosis, diagnostics, PCR, primers


References

Krauss H. et al. Zoonoses: infectious diseases transmissible from animals to humans. 3rd ed. Washington, USA: ASM Press, 2003. P. 191–193. DOI: https://doi.org/10.1128/9781555817787.ch2.

OIE (World Organisation for Animal Health). Manual of diagnostic tests and vaccines for terrestrial animals (mammals, birds and bees). 8th ed. Paris: OIE, 2018. 1833 pp.

Касич В. Ю., Фотина Т. И. Хламидиоз животных: этиология, распространение на северо-востоке Украины, средства специфической профилактики. Вісник Сумського національного аграрного університету. 2010. № 3. С. 89–98.

Rodolakis A. Yousef Mohamad K. Zoonotic potential of Chlamydophila. Veterinary Microbiology. 2010. Vol. 140, No. 3–4. P. 382–391. DOI: https://doi.org/10.1016/j.vetmic.2009.03.014.

De Puysseleyr K. et al. Development and validation of a real-time PCR for Chlamydia suis diagnosis in swine and humans. PloS One. 2014. Vol. 9, No. 5. P. e96704. DOI: https://doi.org/10.1371/journal.pone.0096704.

Wolff B. J., Morrison S. S., Winchell J. M. Development of a multiplex TaqMan real-time PCR assay for the detection of Chlamydia psittaci and Chlamydia pneumoniae in human clinical specimens. Diagnostic Microbiology and Infectious Disease. 2018. Vol. 90, No. 3. P. 167–170. DOI: https://doi.org/10.1016/j.diagmicrobio.2017.11.014.

Sachse K. et al. Recent developments in the laboratory diagnosis of chlamydial infections. Veterinary Microbiology. 2009. Vol. 135, No. 1–2. P. 2–21. DOI: https://doi.org/10.1016/j.vetmic.2008.09.040.

Tamura K. et al. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution. 2007. Vol. 24, No. 8. P. 1596–1599. DOI: http://dx.doi.org/10.1093/molbev/msm092.

Rozen S., Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. In: Misener S., Krawetz S. A. (eds) Bioinformatics Methods and Protocols. Totowa, NJ: Humana Press, 2000. P. 365–386. (Methods in Molecular Biology, Vol. 132). DOI: https://doi.org/10.1385/1-59259-192-2:365.

Pantchev A. et al. New real-time PCR tests for species-specific detection of Chlamydophila psittaci and Chlamydophila abortus from tissue samples. Veterinary Journal. 2009. Vol. 181, No. 2. P. 145–150. DOI: https://doi.org/10.1016/j.tvjl.2008.02.025.

Okuda H. et al. Detection of Chlamydophila psittaci by using SYBR green real-time PCR. Journal of Veterinary Medical Science. 2011. Vol. 73, No. 2. P. 249–254. DOI: https://doi.org/10.1292/jvms.10-0222.

image description

2010-2024 © ННЦ ІЕКВМ Всі права захищено.

image description