DOI: 10.36016/VM-2019-105-1



Veterinary Medicine: inter-departmental subject scientific collection. 2019. Issue 105. P. 5–10.


Download full text (PDF)


ON THE ORIGIN AND EVOLUTION OF BACILLUS ANTHRACIS


Bіlokonov I. I.

National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”, Kharkiv, Ukraine

The paper presents data on the monitoring of the origin and evolution of B. anthracis, which show that the microbe became virulent for humans and animals through the initial transformation into B. cereus group containing a number of closely related species of many spore forming microorganisms inhabiting soil. This was followed by the divergence of B. anthracis from the rest of B. cereus group as a result of obtaining virulence factors such as plasmids рХО1 and рХО2, which determine synthesis of the main virulence factors — the toxin and the capsule. The evolution of Bac. anthracis and the disease caused by the pathogen occurs at the present time as well, possibly even in a reversed direction, as suggested by multiple observations on the circulation of capsule devoid, avirulent forms in animals and in the environment. The new stage in the evolution of Bac. anthracis has started in conjunction with the mass vaccination of animals against anthrax with spore vaccines. In these conditions of vaccination and the presence of active immunity the anthrax bacillus is incapable of infecting an animal, subsequent multiplication, passage to the environment and conversion to the spore form. According to several authors, vegetation of the anthrax microbe in the environmental conditions different from a living organism where the reproduction occurs leads to the loss of virulent properties because they are not required to live in the soil. Other mechanisms of Bac. anthracis evolution cannot be excluded when it resides in the soil, especially at old burial sites where the anthrax bacillus can vegetate during the warm season and to be influenced by action of bacteriophages in the form of genetic transduction, transformation and conjugation. At present, the «anthrax-like» diseases of animals and humans caused by virulent strains of Bac. cereus and Bac. thuringiensis are being registered at increased rate. Diagnosing infectious diseases with clinical and gross-pathological findings of anthrax it is necessary to account the possibility of detection of unusual strains of Bac. anthracis or other bacilli. The correct diagnosis of anthrax can be made only with a complex approach including bacteriological and serological examination, biological assays in laboratory animals, and, essentially, molecular-genetic methods

Keywords: B. anthracis, B. cereus, genome, plasmids, evolution, anthrax


References

Бакулов И. А., Гаврилов В. А., Селиверстов В. В. Сибирская язва (Антракс). Владимир : Посад, 2001. 278 с.

Білойван О. В., Стегнй Б. Т., Герилович А. П. [та ін.] Розробка позитивного ПЛР-контролю для виявлення генетичного матеріалу B. anthracis // Вет. медицина : міжвід. тематич. наук. зб. 2018. Вип. 104. С. 305–309.

Бусол В., Постой В., Блажко А. Епізоотологічний моніторинг: сибірка. Вет. медицина України. 2002. № 3. С. 12–14.

Лиманская О. Ю., Лиманский А. П. Маркеры для видоспецифической детекции бацилл группы Bacillus cereus. Журн. микробиол., эпидемиол., иммунобиол. 2008. № 3. С. 20–26.

Лиманская О. Ю., Муртазаева Л. А., Кли С., Лиманский А. П. Детекция возбудителя сибирской язвы с помощью полимеразной цепной реакции в реальном времени. Biotechnologia Acta. 2012. Т. 5, № 5. С. 65–71.

Лиманская О. Ю., Муртазаева Л. О., Лиманский О. П. Видоспецифічна детекція збудника сибірки. Biotechnologia Acta. 2012. Т. 5, № 1. С. 92–99.

Yu G. X. Pathogenic Bacillus anthracis in the progressive gene losses and gains in adaptive evolution. BMC Bioinform. 2009; 10 (suppl. 1): S3.

Turnbull P. Introduction: anthrax history, disease and ecology. Curr. Top. Microbiol. Immunol. 2002; 271: 1–19.

Berry C., O’Neil S., Ben-Dov E. [et al.]. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 2002; 68(10): 5082–5095.

Roh J., Choi J., Li M. [et al.]. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 2007; 17(4): 547–559.

Nakamura L., Jackson M. Clarification of the taxonomy of Bacillus mycoides. Int. J. Syst. Bacteriol. 1995; 45: 46–49.

Lechner S., Mayr R., Francis K., [et al.]. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int. J. Syst. Bacteriol. 1998; 4: 1373–1382.

Daffonchio D., Cherif A., Brusetti L. [et al.]. Nature of polymorphisms in 16 S–23 S rRNA gene intergenic transcribed spacers fingerprinting of Bacillus and related genera. Appl. Environ. Microbiol. 2003; 69: 5128–5137.

Priest F., Barker M., Baillie L. [et al.]. Population structure and evolution of the Bacillus cereus group. J. Bacteriol. 2004; 186: 7959–7970.

Rasko D., Worsham P., Abshire T. [et al.]. Microbial forensic applications of comparative genome analysis: Identification of Bacillus anthracis genetic markers in the Amerithrax investigation. Proc. Natl. Acad. Sci. USA. 2011; 108(12): 5027–5032. https://doi.org/10.1073/pnas.1016657108.

Helgason E., Okstad O., Caugant D. [et al.]. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis — one species on the basis of genetic evidence. Appl. Environ. Microbiol. 2000; 66: 2627–2630.

Ko K., Kim J. W., Kim J. M. [et al.]. Population structure of the Bacillus cereus group as determined by sequence analysis of six housekeeping genes and the plcR gene. Infect. and Immun. 2004; 72: 5253–5261.

Sorokin A., Candelon B., Guilloux K. [et al.]. Multiple-locus sequence typing analysis of Bacillus cereus and Bacillus thuringiensis reveals separate clustering and a distinct population structure of psychrotrophic strains. Appl. Environ. Microbiol. 2006; 72(2): 1569–1578.

Didelot X., Barker M., Falush D., Priest F. Evolution of pathoge-nicity in the Bacillus cereus group. Syst. Appl. Microbiol. 2009; 32(2): 81–90.

Pilo P., Frey J. Bacillus anthracis: Molecular taxonomy, population genetics, phylogeny and patho-evolution (Review) Infect. Genet. Evol. 2011; 11: 1218–1224.

Hernandez E., Ramisse F., Ducoureau J. [et al.]. Bacillus thuringiensis subsp. konkukian (serotype H 34) superinfection: case report and experimental evidence of pathogenicity in immunosuppressed mice. J. Clin. Microbiol. 1998; 36(7): 2138–2139.

Challacombe J. F., Altherr M. R., Xie G. [et al.]. The complete genome sequence of Bacillus thuringiensis Al Hakam. J. Bacteriol. 2007; 189: 3680–3681.

Hoffmaster A., Ravel J., Rasko D. [et al.]. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. USA. 2004; 101(22): 8449–8454.

Hoffmaster A., Novak R., Marston C. [et al.]. Genetic diversity of clinical isolates of Bacillus cereus using multilocus sequence typing. BMC Microbiol. 2008; 8: 191.

Oh S. Y., Budzik J. M., Garufi G., Schneewind O. Two capsular polysaccharides enable Bacillus cereus G 9241 to cause anthrax like disease. Mol. Microbiol. 2011; 80: 455–470.

Wilson M., Vergis J., Alem F. [et al.]. Bacillus cereus G 9241 makes anthrax toxin and capsule like highly virulent B. anthracis Ames but behaves like attenuated toxigenic nonencapsulated B. anthracis Sterne in rabbits and mice. Infect. and Immun. 2011; 79(8): 3012–3019.

Klee S., Brzuszkiewicz E., Nattermann H. [et al.]. The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids. PLoS One. 2010; 5: e 10986.

Pilo P., Rossano A., Bamamga H. [et al.]. Bovine Bacillus anthracis in Cameroon. Appl. Environ. Microbiol. 2011; 77(16): 5818–5821.

Luna V., King D., Peak K. [et al.]. Bacillus anthracis virulent plasmid pX02 genes found in large plasmids of two other Bacillus species. J. Clin. Microbiol. 2006; 44(7): 2367–2377.

Leendertz F., Ellerbrok H., Boesch C. [et al.]. Anthrax kills wild chimpanzees in a tropical rainforest. Nature. 2004; 430: 451–452.

Keim P., Price L., Klevytska A. [et al.]. Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J. Bacteriol. 2000; 182: 2928–2936.

Van Ert M., Easterday W., Huynh L. [et al.]. Global genetic population structure of Bacillus anthracis. PLoS One. 2007; 2: e 461.

Hu X., Van der Auwera G., Timmery S. [et al.]. Distribution, diversity, and potential mobility of extrachromosomal elements related to the Bacillus anthracis pXO1 and pXO2 virulence plasmids. Appl. Environ. Microbiol. 2009; 75: 3016–3028.

Van der Auwera G., Andrup L., Mahillon J. Conjugative plasmid pAw63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT972. BMC Genom. 2005; 6: 103.

Keim P., Wagner D. Humans and evolutionary and ecological forces shaped the phylogeography of recently emerged diseases. Nature. Rev. Microbiol. 2009; 7: 813–821.

Han C., Xie G., Challacombe J. [et al.]. Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. J. Bacteriol. 2006; 188: 3382–3390.

image description

2010-2024 © ННЦ ІЕКВМ Всі права захищено.

image description